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LETTER TO THE EDITOR 

Partition function from the Green function 

Y Avishai and J Richert 
Centre de Recherches Nucltaires et UniversitC Louis Pasteur de Strasbourg, Groupe de 
Physique NuclCaire ThCorique, BP 20 67037 Strasbourg-Cedex, France 

Received, 30 March 1984, in final form 2 July 1984 

Abstract. The partition function in quantum statistical mechanics can be expressed as an 
energy integral of exp(-PE) times the discontinuity of the Green function. A Monte Carlo 
approach for its evaluation which is not based on path integral representation is suggested. 
The fermion problem is avoided in the sense that all integrands are positive. Some weak 
points are underlined. We also discuss the evaluation of statistical averages using the 
pertinent procedure. 

In his study of multiparticle scattering problems, Weinberg discussed the physical 
content of the many-particle Green function G(  W) for energies W outside the spectrum 
of the Hamiltonian H (Weinberg 1964). Among others, he suggested an obvious 
expression which relates G( E f i s )  to the partition function in quantum statistical 
mechanics 

: I-* 

Z ( p )  = Tr[exp(-pH)] = J exp(-@E) Tr[AG(E)] dE, ( 1 )  
271. 0 

where 

AG(E) = G ( E  + i s ) -  G ( E  -is) .  (2) 

Since an exact solution of the many-body problem is impossible, one should regard 
(1 )  as an effective approximation for finite E. 

A great deal of effort has been devoted in recent years to the generation of methods 
and algorithms for calculating the partition function. Most of them are based on path 
integrals resulting from a division of the (imaginary) time axis and the use of the 
generalised Trotter formula (Suzuki et a1 1977). For the many-fermion problem, it is 
not always possible to perform the ensuing Monte Carlo simulations since some 
configurations give negative contributions to the partition function. Thus, a much 
more sophisticated scheme is required (Hirsch et a1 1982) which presently is formulated 
only for one-dimensional models with hopping and nearest-neighbour interactions. 
Another kind of approach is to use Langevin equations for the time-evaluation of the 
configurations in which the complex ‘probability’ appears as a force term (G Parisi 1983, 
Klauder 1983). Numerical tests of this method have not yet been given. 

The purpose of the present letter is to examine the possibility of evaluating Z ( p )  
by a Monte Carlo procedure starting from (1). The argumenh presented below are 
quite elementary but we are unaware of a similar approach. It should be stressed once 
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more that, in this equation, E is fixed but finite so that (1) is only an approximation. 
In addition, we show how one can evaluate statistical averages using the above 
procedure. 

The algorithm suggested below could be useful mainly for systems which can be 
described by matrix Hamiltonians. As an example we may consider a system of N 
fermions occupying M > N single particle levels interacting through the Hamiltonian 

where the indices run over single-particle states, and the fermion operators anticommute, 
namely {a: ,  a@} = Sap. The basic states are the (2) Slater determinants 

N I Q i )  = ( N  n a:,lO) 
k =  I 

where 10) is the vacuum and i = 1,2, .  . . (5) runs over all the N-tuples a, . . . a N  of 
different integers between 1 and M. The evaluation of the matrix elements H,= 
(QilH1Qj) is tedious but standard. 

Another system we have in mind is a quantum spin system consisting of N spins, 
interacting through the Hamiltonian 

where the sum runs over nearest neighbours. The Hilbert space is spanned by 2N 
states of k spins up and N - k spins down, which we can order by a single index 
n = 1,2, . . . 2N. The evaluation of the matrix elements H,,,, = (m(H(n)  is then reduced 
to (mlHijln) which is easily evaluated (Suzuki e? al 1977, equation (2.18)). 

It is evident that, as the number of particles becomes large, the matrices H cannot 
be stored. This is of course a general feature which appears elsewhere. Actually, it is 
possible in our case to avoid the storage problem by generating the matrix elements 
each time they are needed. This procedure will consume much more time of course. 
We can now explain briefly our Monte Carlo approach. 

First, let us notice that some modification is needed with regard to the integration 
range. To be specific, we assume H to be an N x N matrix so that there is a symmetric 
interval [-M, M ]  which includes all the eigenvalues E, of H. Then, in the energy 
representation Tr(AG) = - 2 d ~  Z, [E' +(E - and (1) should then read 

r M  

Z(P)  = E J exp(-PE) [ E ~ + ( E  - dE. (3) 
-M n 

In the limit E + O  using E / ( E ~  +x2) + 6(x), equation (3) gives indeed Z ( p )  = 
Z, exp(-PE,). Actually, some change of variable is needed since we need the S -  
function on finite interval so let us assume that this has already been done. 

Now, the first point to be noticed is that the term 

I ( E )  = [ E 2  + ( E  - E,)2]- '  
n 

(4) 

is almost 'naturally' suitable for Metropolis-type Monte Carlo calculation. To see this, 
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define the operator 

O ( E )  = E 2  + ( E  - H ) ~  ( 5 )  

so that Z ( E )  = Tr( 0 - I ) .  Evidently, O( E )  is positive definite, and therefore the integral 
(summation convention implied) 

z ( E ) =  n dXk exp(-O,,xixj) I -m k = 1  

exists and is equal to .rrN12[det( 0)]-’12. Then clearly 

which can be regarded as the statistical average of the random variable y = 2X&f with 
normalised probability density P = z - ’  exp(-Oigixj). It is now tempting to rush and 
evaluate I ( E )  on an energy mesh after which the partition function Z ( p )  can be 
calculated by one quadrature. However, before elaborating on the positive points, 
there are two disadvantages of this procedure which should be underlined. The first 
one isthat when the energy E is equal to one of the eigenvalues E,, then the variance 
U =  ( y 2 - y  ) is proportional to 1 / ~  so that many Metropolis iterations may be 
required just at the most important points. The second disadvantage is that the 
probability used is not related to the underlying temperature. The equilibrium configur- 
ation from which we sample is determined from the distribution of eigenvalues and 
not from the thermalisation of the system. The attractiveness of (7) is due firstly to 
the relatively small number of integration variables (namely N) compared with the 
large number appearing in the time-slicing procedure. Secondly, the probability density 
is Gaussian, which is always welcome from a practical point of view. Finally, even if 
the RHS of (7) is evaluated with fewer Metropolis iterations (so that Z ( E )  is poorly 
approximated) it is expected to exhibit maxima at the eigenvalues E =E, ,  so that a 
plot of the approximated Z (  E) can give a great deal of information about the spectrum 
of H. 

At this point one may notice that in Monte Carlo calculations one computes 
statistical averages but not the partition function itself. However, from the works of 
Yang and Lee ( 1952) it appears that the partition function contains valuable information 
even without being used in calculation of averages. They have shown that for N Ising 
spins in an external magnetic field X the zeros of the partition function Z ( X ,  p )  in 
the complex fugacity (U exp( - 2 p X ) )  plane, lie on lines (in the thermodynamic limit) 
and that in this limit the lines might approach the real axis. A zero of Z ( 2 ,  p )  for 
real U marks the occurrence of a phase transition. The question of whether zeros of 
Z (for zero field) in the complex temperature plane fall on lines has recently been 
discussed (Saarloos and Kurtze 1984). We are unaware of an analogous consideration 
of quantum spin systems but it is obvious that the zeros of 2 have equal significance 
also in the quantum case. 

Thus, the partition function has a merit of its own, but in order to analyse its 
analytic behaviour its numerical evaluation must be reliable. It is our belief that a 
Monte Carlo calculation for Z ( E )  equation (7) (on an energy mesh) is feasible, from 
which Z(p )  is evaluated according to (3). 

Now we can use our formalism also to calculate statistical averages proper and 
not the partition function itself. Replacing z ( E ) - ’  in (7) with [det(0)]”2 and using 

-2 1/2 
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(3) we get (up to an unimportant constant) 
N 

Z ( p )  = d E  n dxk exp{-pE +tlog[det O(E)]  +log y - Oyxixj} I k = l  

= 1 d E  dx exp[-S(E, x)] 

where y = 2 X i  xf and the ‘action’ S(  E, x) is real since 0 is positive definite. Consider 
for example the statistical average of the energy. It is given by 

( E )  = -a log Z/ap = d E  dx E exp[-S(E, x)]/Z(p) (9) I 
which is suitable for Metropolis-type Monte Carlo evaluation, using the normalised 
probability density P E  exp(-S)/Z(P). The price is that de t (0)  must be calculated 
at each iteration, but evaluation of determinants (unlike eigenvalue problems) is a 
direct procedure. The number of elementary arithmetic operations required to evaluate 
a determinant grows as (3)N3 (Knuth 1968). 

Another possibility is to use (3) and (4) together with the definition of ( E ) =  
-8 log Z/ap. We then obtain the relation 

and can evaluate this integral by sampling the energy with probability density 

P(E) =exp(-pE)Z(E)/[ exp(-pE)Z(E) dE. (11) 

The Metropolis test requires the evaluation of the ratio P( E ’ ) /  P( E) in which the value 
of Z can be calculated in a Monte Carlo algorithm as in (7). The advantage of this 
method is that the temperature enters explicitly into the probability density so that the 
sampled energy need not be close to the eigenvalues E,. Hence the variance in the 
evaluation of Z(E) is reduced. (See the discussion after (7)) 

We will now test this last method numerically. Consider a system of two fermions 
in a truncated space of four single particle levels. This system is described by the 
second quantised Hamiltonian introduced previously, in which a, p, y, S run from 1 
to 4 on the single particle levels. 

Although this is a toy problem, the fermionic degrees of freedom (implied by the 
anti-commutation relations {U=, us} = 6,@) show up and affect other attempts to apply 
Monte Carlo simulations (Avishai and Richert 1983). 

For the kinetic energy terms rap we took t l l  = 0.2, r2* = 0.5, t33 = 1.0, tu= 2.5, 
t i 3  = t31 = 0.6, while the potential energy terms assumed the value ~ , ~ , . ~ ( p  > a, 6 > y )  = 
1 .O. Our calculations have been performed with p = (kT)-’ = 0.5. At this value of P, 
the exact value of the averaged energy is (E)exaa=  1.448. Applying the Metropolis 
algorithm on (10) we iterated it 450 times and sampled the value of the energy at 
intervals of ten iterations apart (thus maintaining statistical independence). The 
arithmetic mean of these 45 samplings was (E)MC = 1.4626. This result cannot of course 
lead to a conclusive statement about the feasibility of the present schemes but it is 
quite encouraging. 
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Finally, we want to stress that in this formalism there is no fermion problem. The 
system under consideration can be bosonic, fermionic, or both. It is sufficient to know 
the matrix elements of the Hamiltonian H in some (conveniently chosen) complete 
basis. The operator O ( E )  defined in ( 5 )  is always positive definite. 

In summary, we have started from expression ( 1 )  (Weinberg 1964) and discussed 
a Monte Carlo algorithm for calculating the partition function itself as well as statistical 
averages. This algorithm is not based on a path integral, and is applicable also to 
fermion systems. We hope to present numerical results in the near future. 
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